• 130 N. West Street Crown Point, Indiana 46307
  • Toll Free:   866 894-7337
    219-644-3231

Training

Home :: Hybrid Vehicles :: Training

Hands-on hybrid electric vehicle battery course

The 2-day nickel metal hydride (NiMH) hybrid battery course demonstrates split current charge-discharge cycling, internal resistance measurements and hybrid battery balancing. No prior knowledge of hybrid batteries is required. The hands-on experience includes use of the EVc-30 hybrid vehicle battery reconditioning unit. Anyone can learn!

Hybrid battery short course schedules (2018):

Indiana (35 miles from Chicago)

NuVant Systems Inc.
130 N. West Street

Crown Point, IN 46307

Massachusetts

Northeastern University
360 Huntington Avenue

Boston, MA 02215

November 8-9 November 15-16
November 28-29 November 28-29
December 10-11 December 4-5
December 17-18 December 13-14
January 3-4 January 3-4
January 17-18 January 17-18

Register now!

Indiana and Massachusetts course fee:
$500/person

Limit: 8 attendees per course


Call 219-644-3231 for class registration help.


Day 1:  8:30 AM – 4:30 PM

Day 2:  8:30 AM – 4:30 PM


Indiana and Massachusetts course registration includes:

  • Course work materials
  • Continental breakfast, snacks & coffee breaks.  Lunch on your own.
  • Use of NuVant EVc units for charge-discharge, internal resistance measurements and complete reconditioning.

Malaysia course registration includes all of the above plus:

  • Hotel accomodations at Hotel Transit Kuala Lumpur courtesy of NuVant Systems
  • Free breakfast and lunch on both days

Hybrid battery course benefits

  • Experienced instructors provide in-depth knowledge on hybrid battery cycling, reconditioning and safety issues.
  • Real time demonstration of charge-discharge cycling and battery internal resistance measurements.
  • Learn to identify bad modules prior to reconditioning
  • Work the database for inventory maintenance and pack assembly.
  • The dangers of over-charging and over-discharging.

Click images to enlarge

 "Out of balance" Ford Escape battery pack
Ford Escape “out-of-balance” battery pack

 Ford Escape reconditioned battery pack
Ford Escape reconditioned battery pack

Battery-sorting software module
Battery-sorting software module

Background

Hybrid battery packs have 28 to 40 NiMH modules assembled in series. A Prius type prismatic module consists of six individual NiMH cells (1.2 V each) assembled in series. Detailed specifications for these modules are available.  

7.2 V hybrid battery prismatic module with individual cell marked 1 – 6


28 prismatic modules with a series nominal voltage of 202 V

NiMH modules undergo shallow depth-of-discharge (less than 10%) because they are used for power assist, not electric drive.  Unused electrode material undergoes structural changes that effectively reduces amp hour (Ah) capacity. This reversible failure mode (“memory effect”)  takes modules out-of-balance with neighboring modules, especially those that are near the pack center. Out-of-balance modules can undergo voltage reversal during discharge. Voltage reversal at the anode and cathode permanently damages the module.  High-rate charging generates gaseous oxygen at the positive electrode that can pressurize and rupture the module casing.   Modules, reconditioned by a series of deep charge-discharge cycles with tapered currents, will recover lost capacity and have an extended lifetime.  Overheating of hybrid batteries causes venting of vaporized electrolyte water. This permanent failure mode increases the internal resistance of the module. Such  modules substantially increase reconditioning time. Modules suffering from permanent failure modes are identified and removed before full reconditioning.   


Syllabus

Part I: Introduction

a) Battery aftermarket and geopolitics
b) How NuVant reconditioning technology differ from others

Part II: Terminology, definitions and usage

a) Coulombs, amps, voltage, amp-hour, watt-hour
b) Cells, modules, packs, cylindrical versus prismatic cells
c) NiMH batteries vs. Li-ion batteries

Part III: Underpinning science behind battery reconditioning

a) Reversible and irreversible capacity losses
b) NiMH memory effect – effect of shallow depth of discharge
c) Use of state-of-health data for module sorting and battery pack assembly
d.) Refurbishing packs vs Reconditioning modules

Part IV: Hands-on experience with the EVc-30 reconditioning tool

a) EVc-30 overview
b) Prius modules, clamping, cooling box and connections to EVC-30
c) EVcharge software: Opening/writing project file, starting/storing project files
d) NuVant reconditioning plans – Prius and Honda modules
e) Before and after reconditioning discharge profiles
f) Dangers of reconditioning – Module swelling, overheating, pack explosions

Part V: Interpreting EVc-30 data output 

a) Results –Diagnostic discharge profile, Exporting summary files
b) QR code reader – Tracking inventory
c) Module pairing after reconditioning (Battery pack balancing)
d) Reconditioning data base

Part VI: Conclusions:

a) Business models
b) Electric versus hybrid vehicles
c) Specifications look-up table
d) EVc operation glossary